Microarray analysis sheds light on the dedifferentiating role of agouti signal protein in murine melanocytes via the Mc1r.
نویسندگان
چکیده
The melanocortin-1 receptor (MC1R) is a key regulator of pigmentation in mammals and is tightly linked to an increased risk of skin cancers, including melanoma, in humans. Physiologically activated by alpha-melanocyte stimulating hormone (alphaMSH), MC1R function can be antagonized by a secreted factor, agouti signal protein (ASP), which is responsible for the lighter phenotypes in mammals (including humans), and is also associated with increased risk of skin cancer. It is therefore of great interest to characterize the molecular effects elicited by those MC1R ligands. In this study, we determined the gene expression profiles of murine melan-a melanocytes treated with ASP or alphaMSH over a 4-day time course using genome-wide oligonucleotide microarrays. As expected, there were significant reductions in expression of numerous melanogenic proteins elicited by ASP, which correlates with its inhibition of pigmentation. ASP also unexpectedly modulated the expression of genes involved in various other cellular pathways, including glutathione synthesis and redox metabolism. Many genes up-regulated by ASP are involved in morphogenesis (especially in nervous system development), cell adhesion, and extracellular matrix-receptor interactions. Concomitantly, ASP enhanced the migratory potential and the invasiveness of melanocytic cells in vitro. These results demonstrate the role of ASP in the dedifferentiation of melanocytes, identify pigment-related genes targeted by ASP and by alphaMSH, and provide insights into the pleiotropic molecular effects of MC1R signaling that may function during development and may affect skin cancer risk.
منابع مشابه
New insights into G-protein-coupled receptor signaling from the melanocortin receptor system.
For decades, geneticists, as well as breeders of “fancy” pets, have been interested in the interaction of the melanocortin 1 receptor locus (Mc1r; also known as melanocyte-stimulating hormone receptor, Mshr) with the Agouti locus because of the array of coat colors that alterations at these loci generate. In the simplest case, a mouse with two wild-type Mc1r alleles and two recessive Agouti all...
متن کاملBioactive motifs of agouti signal protein.
The switch between the synthesis of eu- and pheomelanins is modulated by the interaction of two paracrine signaling molecules, alpha-melanocyte stimulating hormone (MSH) and agouti signal protein (ASP), which interact with melanocytes via the MSH receptor (MC1R). Comparison of the primary sequence of ASP with the known MSH pharmacophore provides no suggestion about the putative bioactive domain...
متن کاملThe differential expression of MC1R regulators in dorsal and ventral quail plumages during embryogenesis: Implications for plumage pattern formation
Melanin pigmentation patterns are ubiquitous in animals and function in crypsis, physical protection, thermoregulation and signalling. In vertebrates, pigmentation patterns formed over large body regions as well as within appendages (hair/feathers) may be due to the differential distribution of pigment producing cells (melanocytes) and/or regulation of the melanin synthesis pathway. We took adv...
متن کاملDefining MC1R Regulation in Human Melanocytes by Its Agonist α-Melanocortin and Antagonists Agouti Signaling Protein and β-Defensin 3
The melanocortin 1 receptor (MC1R), a G(s) protein-coupled receptor, has an important role in human pigmentation. We investigated the regulation of expression and activity of the MC1R in primary human melanocyte cultures. Human β-defensin 3 (HBD3) acted as an antagonist for MC1R, inhibiting the α-melanocortin (α-melanocyte-stimulating hormone (α-MSH))-induced increase in the activities of adeny...
متن کاملAgouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway
Melanocortin-1 receptor (MC1R) and its ligands, alpha-melanocyte stimulating hormone (alphaMSH) and agouti signaling protein (ASIP), regulate switching between eumelanin and pheomelanin synthesis in melanocytes. Here we investigated biological effects and signaling pathways of ASIP. Melan-a non agouti (a/a) mouse melanocytes produce mainly eumelanin, but ASIP combined with phenylthiourea and ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 6 شماره
صفحات -
تاریخ انتشار 2009